Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Serkan Soylu, ${ }^{\text {a }}{ }^{*}$ Murat Taș, ${ }^{\text {b }}$ Ömer Andac,', Hümeyra Batı, ${ }^{\text {b }}$ Nezihe Calıșkan ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$
${ }^{\text {a }}$ Ondokuz Mayıs University, Art and Science Faculty, Department of Physics, 55139-Samsun, Turkey, and ${ }^{\text {b }}$ Ondokuz Mayıs University, Art and Science Faculty, Department of Chemistry, 55139-Samsun, Turkey

Correspondence e-mail: mssoylu@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=12.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(3-Chloro-4-methoxyphenyl)- N^{\prime} -hydroxy-2-oxo-2-phenylacetamidine

The title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$, consists of two aromatic groups linked through the $\mathrm{C}=\mathrm{N}-\mathrm{OH}$ monoxime group. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds $[\mathrm{O} \cdots \mathrm{N} 2.773$ (2), $\mathrm{N} \cdots \mathrm{Cl} 3.719$ (2) \AA] are highly effective in forming polymeric chains, thereby stabilizing the crystal structure. The compound has an E configuration.

Comment

Compounds containing oxime groups are crucially important in the chemical industry and numerous studies on their derivatives have been performed (Bertolasi et al., 1982; Gilli et al., 1983; Hökelek et al., 2001; Büyükgüngör et al., 2003; Saarinen et al., 1978; Mokhır et al., 2002). It is well known that the oximato group $(\mathrm{C}=\mathrm{N}-\mathrm{OH})$ can function as a bridge to bind two metal ions through the imino nitrogen and deprotonated oxygen, which can then coordinate with metal ions in diverse ways. With the aim of investigating the versatility of oximes in coordination chemistry and further researching the supramolecular polymer chemistry, successful syntheses with oximato groups were carried out (Liu et al., 2002). Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols and carboxylic acids (Hökelek et al., 2001). In this paper, we report the synthesis, molecular and crystal structure of the title compound, (I). The crystal structure determination was carried out in order to investigate the strength of the hydrogen-bonding capabilities of the oxime group, and to compare the geometry of the oxime moiety with those found in N-hydroxy-2-oxo- $2, N^{\prime}$-diphenylacetamidine (II) (Büyükgüngör et al., 2003), N-(3,4-dichlorophenyl)- N^{\prime} -hydroxy-2-oxo-2-phenylacetamidine, (III) (Hökelek et al., 2003) and 1-(2,6-dimethylphenylamino)propane-1,2-dione dioxime, (IV) (Hökelek et al., 2001). Comparative geometrical parameters in the oxime moiety of (I) and in the related compounds (II), (III) and (IV) are summarized in Table 3.

(I)

The title compound, (I) (Fig. 1), consists of two aromatic groups, linked through a monoxime group. The dihedral angles between the oxime plane $A(\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 1)$ and the noncoplanar benzene rings $B(\mathrm{C} 3-\mathrm{C} 8)$ and $C(\mathrm{C} 9-\mathrm{C} 14)$ are $A / B=$ $63.7(1)^{\circ}, A / C=37.2(1)^{\circ}$ and $B / C=86.56(5)^{\circ}$. Ring B is linked to the $\mathrm{C}=\mathrm{N}-\mathrm{OH}$ group by atom $\mathrm{C} 2(\mathrm{O} 2)$. The other

Received 18 July 2003
Accepted 1 September 2003
Online 24 September 2003

Figure 1

ORTEPIII drawing of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram for (I), viewed along the a axis.
ring (C) is linked to the same functional group by atom N2(H2).

The oxime moiety has an E configuration $[\mathrm{C} 2-\mathrm{C} 1=\mathrm{N} 1-$ O1 = -169.97 (14) ${ }^{\circ}$ (Hökelek et al., 2001; Ellis et al., 1997). In this configuration, the oxime group is involved as a donor in intermolecular hydrogen bonding [O1-H1 $\cdots \mathrm{N} 1^{1} 2.773$ (2) Å; symmetry code: (i) $2-x, 1-y, 1-z]$. There is also an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond $\left[\mathrm{N} 2 \cdots \mathrm{Cl} 1^{\mathrm{ii}}\right.$ 3.71 (18) \AA; symmetry code: (ii) $2-x,-y, 1-z$] (Table 2). These intermolecular hydrogen bonds are highly effective in forming polymeric chains, thereby stabilizing the crystal structure (Fig. 2). As shown in Fig. 2, the chains extend parallel to the b axis. Dipole-dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

Experimental

The title compound was prepared from a mixture of ω-chloroisonitrosoacetophenone ($2.75 \mathrm{~g}, 0.015 \mathrm{~mol}$) and 3-chloro-4-methoxyaniline $(2.36 \mathrm{~g}, 0.03 \mathrm{~mol})$ in dichloromethane $(40 \mathrm{ml})$. The precipitate
was filtered and was then heated at 293 K for 72 h . The crystallized product was filtered off, washed with ethyl alcohol and dried.

The IR spectrum of the complex was recorded with an IASCO FT/ IR-430 spectrophotometer; IR spectroscopic data v $3392(\mathrm{~N}-\mathrm{H})$; $3223(\mathrm{O}-\mathrm{H}) ; 1668(\mathrm{C}=\mathrm{O}) ; 1633(\mathrm{C}=\mathrm{N}) ; 972(\mathrm{~N}-\mathrm{O})$. Elemental analyses: calc. C, $59.12 ; \mathrm{H}, 4.30$; N, 9.19 ; found: C, $59.21 ; \mathrm{H}, 4.42$; N, 9.31. From UV-VIS measurements the UV transitions of $\pi \rightarrow \pi^{*}$ and of $n \rightarrow \mathrm{H}^{*}$ were observed at $236(\varepsilon=75888)-253(\varepsilon=51824) \mathrm{nm}$ and at $253(\varepsilon=4580) \mathrm{nm}$, respectively. The resonance values of the $(\mathrm{C}=\mathrm{N}-$ $\mathrm{OH})$ proton at 11.25 p.p.m., the $(\mathrm{N}-\mathrm{H})$ proton at 8.64 p.p.m., the aromatic protons between $7.99-6.65$ p.p.m. and the OCH_{3} protons at 3.74 p.p.m. were obtained from the ${ }^{1} \mathrm{H}$ NMR spectrum (AC-200 Bruker FT NMR).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$
$M_{r}=304.72$
Monoclinic, $P 2_{d} / n$
$a=5.0135$ (7) A
$b=12.7483$ (11) \AA
$c=22.495$ (3) A
$\beta=91.553$ (11) ${ }^{\circ}$
$V=1437.2$ (3) \AA^{3}
$Z=4$
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8473
\quad reflections
$\theta=0.0-29.4^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.45 \times 0.32 \times 0.30 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer
φ scans
Absorption correction: none
13425 measured reflections 2518 independent reflections 1622 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=0.83$
2518 reflections
199 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\text {int }}=0.058 \\
& \theta_{\text {max }}=25.0^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=0 \rightarrow 17 \\
& l=0 \rightarrow 30
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\begin{array}{l} \\ ,\end{array}\right)$.

C11-C11	1.7313 (17)	O3-C15	1.411 (2)
N1-C1	1.282 (2)	C1-C2	1.502 (2)
N1-O1	1.4063 (17)	C2-C3	1.479 (2)
N2-C1	1.353 (2)	C3-C8	1.382 (2)
N2-C9	1.412 (2)	C3-C4	1.386 (2)
O2-C2	1.2117 (19)	C9-C14	1.356 (2)
$\mathrm{O} 3-\mathrm{C} 12$	1.364 (2)	C9-C10	1.382 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	111.00 (14)	C8-C3-C2	122.58 (15)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9$	128.97 (16)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.25 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	123.02 (15)	C14-C9-N2	123.78 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	113.75 (15)	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 2$	117.15 (16)
N2-C1-C2	122.32 (15)	C10-C11-Cl1	119.55 (14)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	122.37 (15)	C12-C11-Cl1	119.44 (13)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	119.18 (15)	O3-C12-C11	116.61 (16)
C3-C2-C1	118.36 (14)	$\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 13$	125.28 (18)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-169.97 (14)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	151.55 (18)
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	167.99 (19)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-26.7 (3)
C9-N2-C1-C2	-23.6 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 14$	-29.5 (3)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-34.0 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	153.3 (2)
N1-C1-C2-C3	-41.1 (2)	$\mathrm{Cl} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 3$	-0.6 (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	149.54 (18)		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.88(2)$	$1.95(2)$	$2.773(2)$	$154(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.865(18)$	$2.985(18)$	$3.7186(18)$	$143.9(15)$

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $2-x,-y, 1-z$.

Table 3
Comparative geometrical parameters ($\left(\AA,{ }^{\circ}\right)$ in the oxime moiety of (I) and in the related compounds (II), (III) and (IV).

	(I)	(II)	(III)	(IV)
N1-O1	$1.4063(17)$	$1.4167(10)$	$1.429(4)$	$1.423(3)$
N1-C1	$1.282(2)$	$1.2897(12)$	$1.241(6)$	$1.290(3)$
C1-C2	$1.502(2)$	$1.5098(13)$	$1.551(7)$	$1.489(3)$
C2-C1-N1	$113.75(15)$	$114.32(8)$	$118.3(5)$	$116.59(19)$
C1-N1-O1	$111.00(14)$	$110.66(8)$	$112.2(4)$	$109.37(18)$

H atoms on N and O atoms were found in a difference map and their coordinates were refined. All other H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.93-0.96 \AA$) and refined isotropically ($U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED (Stoe \& Cie, 2002); program(s)
used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII Farrugia (1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

References

Bertolasi, V., Gilli, G. \& Veronese, A. C. (1982). Acta Cryst. B38, 502-511.
Büyükgüngör, O., Hökelek, T. Taş, M. \& Batı, H. (2003). Acta Cryst. E59, o883-o885.
Ellis, G., Mallavia, R., Amat-Guerri, F. \& Sastre, R. (1997). Spectrochim. Acta Part A, 53, 2295-2301.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gilli, G., Bertolasi, V. \& Veronese, A. C. (1983). Acta Cryst. B39, 450-456.
Hökelek T. \& Taş, M., Batı H. (2003). Cryst. Res. Technol. In the press.
Hökelek, T., Zülfikaroglu, A. \& Batı, H. (2001), Acta Cryst. E57, o1247-o1249.
Liu, X.-W., Chu, S., Wang, X.-Q., Zhang, Y., Wang, R., Shen, G.-Q. \&. Shen, D.Z. (2002), Inorg. Chem. Commun. 5, 1086-1089.

Mokhır A. A., Gumienna-Kontecka, E., Witek-Kozlowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. \& Sliva, T. (2002), Inorg. Chim. Acta, 329, 113-121.
Saarinen, H., Korvenranta, J. \& Näsäkkälä, E. (1978). Acta Chem. Scand. A32, 4, 303-308.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED 32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

